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ABSTRACT

Federated Learning (FL) is a robust machine learning framework allowing multi-
ple entities to collaboratively train a global model without exposing their sensitive
data. However, FL’s inherent design makes it susceptible to adversarial attacks,
making detection and mitigation crucial for the model’s integrity and reliability.
Traditionally, it was thought that tracking historical weight gradients during train-
ing could establish baseline behavior and identify anomalies suggestive of adver-
sarial intrusions. Yet, our research challenges this belief, suggesting that focusing
on current weight data is more effective for detecting attacks, such as label flip
attacks. This method not only boosts detection accuracy but also enhances stor-
age efficiency, as it avoids the need to store extensive weight gradient histories.
Moreover, this approach to data minimization not only augments privacy by con-
centrating on key data but also lowers the risk of exposing client data, which is in
line with privacy-focused machine learning methodologies. GitHub Project: FL

1 INTRODUCTION

Federated learning (FL) provides a structure for training a machine learning model in a decentralized
manner, ensuring the privacy of participants. However, the decentralized nature introduces a vulner-
ability: malicious clients may compromise the global model by sending manipulated local gradients.
This risk necessitates the development of robust mechanisms to filter and validate incoming updates,
ensuring the security and integrity of FL models.

Recent methods Gupta et al. (2022); Jebreel & Domingo-Ferrer (2022) store historical gradients for
identifying the attackers. However, collecting gradients from all clients raises privacy concerns. One
way to ameliorate this problem involves integrating differential privacy Dwork (2006) and data min-
imization techniques at the server level. Differential privacy mechanisms, like injecting noise during
model aggregation, protect individual contributions; data minimization at the server involves storing
and processing the minimum necessary information, curbing potential privacy breaches. Thus, our
study aims to highlight the limited effectiveness of integrating long HoG (history of gradients) into
the detection mechanism. By omitting the generation of un-targeted attackers, our focus is exclu-
sively on distinguishing targeted attackers (adversarial clients engaged in label poisoning) from nor-
mal clients, utilizing the current gradients of weights. This methodology underscores the marginal
impact of historical gradients on both the accuracy of the detection mechanism and the efficiency of
server storage, while concurrently enhancing privacy considerations.

2 RELATED WORK

In recent years, there has been a rising enthusiasm for FL, marked by a growing number of ap-
plications spanning various fields Li et al. (2020), Niknam et al. (2020), Huang et al. (2019). As
the deployment of FL continues to expand, the significance of ensuring FL security and addressing
adversarial attacks has become increasingly apparent Kairouz et al. (2021). Within the context of
FL, numerous attack strategies have been put forth, encompassing poisoning attacks Tolpegin et al.
(2020), Fang et al. (2020), Bhagoji et al. (2019), Shejwalkar & Houmansadr (2021), membership
inference attacks Nasr et al. (2019), Truex et al. (2019), backdoor attacks Bagdasaryan et al. (2020),
leakage attacks Wang et al. (2018) Mo et al. (2021), and various other approaches Mothukuri et al.
(2021).

The stochastic gradient descent (SGD) algorithm has been found to be susceptible to untargeted
(Byzantine) attacks, in which malevolent clients send random or arbitrary gradients to the server in
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an attempt to impede the convergence or the global model’s performance. There have been several
prior works Erbil & Gursoy (2022); Jebreel & Domingo-Ferrer (2022) aimed at detecting targeted
attackers where they focus on one specific type of attack like random update, targeted data poisoning
attack and model replacement attack.

In a recent advancement in this domain, the authors introduced MUD-HoG Gupta et al. (2022),
employing short HoG (History of Gradients) for detecting untargeted attacks and unreliable clients,
while utilizing long HoG for targeted attack detection. Our empirical findings challenge the neces-
sity of a history of gradients for identifying targeted attacks, demonstrating that relying on current
gradients not only enhances overall accuracy but also improves storage efficiency.

3 METHOD

3.1 HISTORICAL GRADIENT FOR ATTACKER DETECTION

Intuitively, historical gradients of clients indicate the direction of model updates, revealing potential
anomalies like label poisoning or backdoor attacks. Thus, we hypothesis that by tracking these
gradients as trajectories, we can distinguish between malicious and benign clients. Specifically,
an attacker’s gradient trajectory is expected to diverge from that of benign clients. Moreover, in
heterogeneous FL, this divergence becomes to have from the round of the attack happens for the
attacker’s trajectory, while clients with disparate data distributions show deviation from the start of
training. Analyzing these divergences helps identify attackers and non-IID clients, as demonstrated
in Fig. 11.

Figure 1: The green gradients of normal clients always perform normally, while the red gradients
of attackers diverge from the middle of training, and the purple line of the client with the disparate
data distribution diverge from the beginning of training.

To model trajectories, we extract neuron-level statistics as features, where i is the layer index, j the
neuron index, and k the client ID. The statistics for client k’s neuron j in layer i are s(i, j, k), com-
prising moments and IQR: s(i, j, k) = [1st moment, 2nd moment, 3rd moment, 4th moment, IQR].

In order to perform classification with these features, we have designed two methods. The first
method utilizes K-means clustering, which is straightforward but requires pre-identification of the
target number of clusters before classification. To address this limitation, we propose the second
method. In this approach, for each feature of each client’s trajectory, we calculate its z-score. The
z-score for feature x in s(i, j, k) is calculated with mean µ and standard deviation σ of the feature:

zi,j,k,x =
s(i, j, k, x)− µx

σx
.

Subsequently, for each trajectory, we aggregate their z-scores in a weighted manner. The weights
are assigned based on the perceived importance of each feature, where zi,j,k =

∑
x∈X wxzi,j,k,x.

For instance, if we consider 1st moment to have a greater influence on the trajectory, it is assigned a
higher weight wx. Finally, we compare the sum of each client’s weighted z-scores to a predetermined
threshold to determine whether it is indicative of an attacker.
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3.1.1 ANALYSIS

Unfortunately, our model’s performance in classifying based on historical or one-round gradi-
ents is not satisfactory, resembling random generation. This is likely because gradients are high-
dimensional; in such spaces, data points are widely dispersed, making distance and similarity less
intuitive. With vectors scattered across various dimensions independently, modeling historical gra-
dients as a representative trajectory becomes challenging.

3.2 WEIGHT

Following the unsuccessful attempt to classify using gradients, we shifted our focus to employing
weights instead. During our experiments, we observed that Gupta et al. (2022) also implemented
a classification strategy for identifying attackers based on weights. To be noticed, although Gupta
et al. (2022) refers to these as gradients, they essentially utilize weights. In Gupta et al. (2022),
the approach involves extracting the mean of historical weights of each client, and then applying
K-means classification to these statistics.

However, Gupta et al. (2022) does not provide a comparative analysis between the use of historical
weights and one-round weights. Moreover, their experiments do not fully address the challenges in
heterogeneous FL environments. Although they simulate heterogeneity using a Dirichlet distribu-
tion, their testing is limited to a hyperparameter set to 0.9.

Therefore, in Section 4, we replicate the detection approach from Gupta et al. (2022) and further
evaluate its effectiveness. We make the following three hypothesis:

• Does the historical gradients method outperform the one-round gradients method under
heterogeneity with different levels of skewness?

• Does the historical gradients method outperform the one-round gradients method with vary-
ing numbers of participating clients?

• Does the historical gradients method outperform the one-round gradients method with dif-
ferent percentages of malicious clients?

Noting that, owing to the increased complexity in detecting label poisoning attacks as opposed to
other types of attacks, our experiment is exclusively focused on label poisoning.

4 EXPERIMENTAL RESULTS

We train one CNN for MNIST classification using different numbers of clients (n=10,20,50), skew-
ness factors (s=0.3,0.5,0.7) and malicious client rates (0.125,0.200,0.275,0.350,0.425). This CNN
architecture consists of two 5x5 convolutional layers. The first convolutional layer has 10 output
channels, followed by a 2x2 max-pooling operation and ReLU activation. The second convolutional
layer has 20 output channels, utilizes a 5x5 kernel, applies 2D dropout, followed by another 2x2
max-pooling operation and ReLU activation. After the convolutional layers, there is a fully con-
nected layer with 50 units, utilizing dropout regularization and ReLU activation. Finally, there is an
output layer with 10 units, representing the number of classes in the classification task. The total
number of parameters in the network is 21840. We use this CNN architecture to study how FedAvg
and DP-SGD performs in non-i.i.d setting with different combinations of clients, skewness factors
and malicious client rates. In training, we set training epochs to be 60. Also, we use Adam optimizer
with learning rate of 0.001 and torch library’s built-in cross entropy loss function. We acknowledge
that due to lack of time and computing resources, we could not run all combination simulations.

From experiments, we consistently see that the global model in the setting with lowest number
of devices (n=10) shows the best absolute performance and that with highest number of devices
shows the worst absolute performance, in spite of different combinations of skewness factor and
malicious rate, as one can see from comparing Fig. 6-11 in the appendix, for both FedAvg and
DP-SGD. As expected, all settings suffer from model performance deterioration as the malicious
rate increases. Generally, the performance of DP-SGD is slightly worse than FedAvg for all same
combinations of setting, but that is to be expected due to the trade-off between performance and
privacy. However, it is worth noting the stark visual contrast that one can easily see in Fig 11 from
Fig 9. Although the global model with lowest malicious rate and lowest skewness factor performs
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the best, the experiment result not only shows more interpretable outcome, but also more variability
in contrast to Fig 9.

Figure 2: Accuracy of identifying attacker (N
= 20 clients) under FedAvg Figure 3: Accuracy of identifying attacker (N

= 50 clients) under FedAv

Figure 4: Accuracy of identifying attacker (N
= 20 clients) under DP-SGD

Figure 5: Accuracy of identifying attacker (N
= 50 clients) under DP-SGD

From figures above, we can see that performance is as good as or even better in some settings without
long HoG.

For hypothesis 1, after aggregating Fig. 2-5 by skewness factor, we see historical gradient method
never surpasses current gradient method in average accuracy for FedAvg. It manages to beat current
gradient only in DP-SGD with skewness=0.3

For hypothesis 2, after aggregating Fig. 2-5 by number of devices, we see historical gradient method
never surpasses current gradient method in average accuracy for FedAvg and DP-SGD.

For hypothesis 3, after aggregating Fig. 2-5 by rate, we see historical gradient method never sur-
passes current gradient method in average accuracy for FedAvg and DP-SGD.

5 CONCLUSION AND FUTURE WORK

Our study suggests that under heterogeneous FL, using historical weights isn’t always more effective
than one-round weights, which is particularly evident in scenarios with huge number of clients and
high heterogeneity. In these cases, one-round weights often perform better. For future research in
less extreme settings, historical weights could be useful for classification, but in more severe cases,
one-round weights are recommended for efficiency and accuracy.

Although our results typically favor one-round over historical weights, both this study and Gupta
et al. (2022) have focused only on the ’mean’ trajectory statistic. To thoroughly evaluate historical
weights, more comprehensive statistics should be analyzed, similar to our approach with historical
weights.

If historical weights are found to be very effective one day, we recommend their use in continuous FL
contexts, which proposed by Wang et al. (2022). Here, attacker filtering occurs at each convergence
of the global model, offering a more appropriate environment for historical weights, avoiding the
high computational demands of using them in every round.
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A APPENDIX

Figure 6: FedAvg: Test accuracy over 60 rounds for n=10

Figure 7: DP-SGD: Test accuracy over 60 rounds for n=10
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Figure 8: Test accuracy of FedAvg over 20
clients

Figure 9: Test accuracy of FedAvg over 50
clients

Figure 10: Test accuracy of DP-SGD over 20
clients

Figure 11: Test accuracy of DP-SGD over 50
clients
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